This content is part of the Essential Guide: An enterprise guide to big data in cloud computing

big data

Big data is a term that describes a large volume of structured, semi-structured and unstructured data that has the potential to be mined for information and used in machine learning projects and other advanced analytics applications.

Big data is often characterized by the 3Vs: the extreme volume of data, the wide variety of data types and the velocity at which the data must be processed. These characteristics were first identified by Gartner analyst Doug Laney in a report published in 2001. More recently, several other Vs have been added to descriptions of big data, including veracity, value and variability. Although big data doesn't equate to any specific volume of data, the term is often used to describe terabytes, petabytes and even exabytes of data captured over time.

Importance of big data

Big data has the potential to provide companies with valuable insights into their customers which can be used to refine marketing campaigns and techniques and increase customer engagement and conversion rates. Brands and businesses who utilize big data hold a competitive advantage over those who ignore the data since they have the ability to make faster and more informed business decisions.

Furthermore, utilizing big data enables companies to become increasingly customer-centric. Past and real time data can be used to assess the evolving preferences of consumers, consequently allowing businesses to update and improve their marketing strategies and become more responsive to customer desires and needs.

Examples of big data

The different branches of information found in big data include:

  • Comparative analysis - This includes the cross examination of user behavior metrics and the observation of real time customer engagement in order to compare one company's products, services and brand authority with those of its competition.
  • Social media listening - This is information about what people are saying on social media about a specific business or product that goes beyond what can be delivered in a poll or survey. This data can be used to help identify target audiences for marketing campaigns by observing the activity surrounding specific topics across various sources.
  • Marketing analysis - This includes information that can be used to make the promotion of new products, services and initiatives more informed and innovative.
  • Customer satisfaction - All of the information gathered can reveal how customers are feeling about the brand, if any potential issues may arise, how brand loyalty might be preserved and how customer service efforts might be improved.

Breaking down the Vs of big data

Such voluminous data can come from myriad different sources, such as business transaction systems, customer databases, medical records, internet clickstream logs, mobile applications, social networks, the collected results of scientific experiments, machine-generated data and real-time data sensors used in internet of things (IoT) environments. Data may be left in its raw form or preprocessed using data mining tools or data preparation software before it is analyzed.

Big data sources and value vary widely and can have varied uses, depending on the level of trust in the data.
Big data is a collection of data from various sources ranging from well-defined to loosely defined, derived from human or machine sources.

Big data also encompasses a wide variety of data types, including:

  • structured data in SQL databases, data lakes and data warehouses;
  • unstructured data -- such as text and document files held in Hadoop clusters or NoSQL systems; and
  • semi-structured data -- such as web server logs or streaming data from sensors.

Further, big data includes multiple, simultaneous data sources, which may not otherwise be integrated. For example, a big data analytics project may attempt to gauge a product's success and future sales by correlating past sales data, return data and online buyer review data for that product.

Velocity refers to the speed at which big data is generated and must be processed and analyzed. In many cases, sets of big data are updated on a real- or near-real-time basis, instead of daily, weekly or monthly updates -- which is the case in many traditional data warehouses. Big data analytics projects ingest, correlate and analyze the incoming data, and then render an answer or result based on an overarching query. This means data scientists and other data analysts must have a detailed understanding of the available data and possess some sense of what answers they're looking for to make sure the information they get is valid and up to date. Velocity is also important as big data analysis expands into fields like machine learning and artificial intelligence (AI), where analytical processes automatically find patterns in the collected data and use them to generate insights.

Watch how big data is being used today and how it
will impact jobs and markets in years to come.

Data veracity refers to the degree of certainty in data sets. Uncertain raw data collected from multiple sources -- such as social media platforms and webpages -- can cause serious data quality issues that may be difficult to pinpoint. For example, a company that collects data from hundreds of sources may be able to identify inaccurate data, but its analysts need data lineage information to trace where the data is stored so they can correct the issues.

Bad data leads to inaccurate analysis and may undermine the value of business analytics because it can cause executives to mistrust data as a whole. The amount of uncertain data in an organization must be accounted for before it is used in big data analytics applications. IT and analytics teams also need to ensure that they have enough accurate data available to produce valid results.

Some data scientists also add a fifth V – value -- to the list of characteristics of big data. As explained above, not all data collected has real business value and the use of inaccurate data can weaken insights provided by analytics applications. It's critical that organizations employ practices such as data cleansing and confirm that data relates to relevant business issues before they use it in a big data analytics project.

Variability also often applies to sets of big data, which are less consistent than conventional transaction data and may have multiple meanings or be formatted in different ways from one data source to another -- things that further complicate efforts to process and analyze the data. Some people ascribe even more Vs to big data; data scientists and consultants have created various lists with between seven and 10 Vs.

How big data is stored and processed

The need to handle big data velocity imposes unique demands on the underlying compute infrastructure. The computing power required to quickly process huge volumes and varieties of data can overwhelm a single server or server cluster. Organizations must apply adequate processing capacity to big data tasks in order to achieve the required velocity. This can potentially demand hundreds or thousands of servers that can distribute the processing work and operate collaboratively in a clustered architecture.

Achieving such velocity in a cost-effective manner is also a challenge. Many enterprise leaders are reticent to invest in an extensive server and storage infrastructure to support big data workloads, particularly ones that don't run 24/7. As a result, public cloud computing is now a primary vehicle for hosting big data systems. A public cloud provider can store petabytes of data and scale up the required number of servers just long enough to complete a big data analytics project. The business only pays for the storage and compute time actually used, and the cloud instances can be turned off until they're needed again.

To improve service levels even further, public cloud providers offer big data capabilities through managed services that include:

In cloud environments, big data can be stored in:

  • Hadoop Distributed File System (HDFS);
  • lower-cost cloud object storage, such as Amazon Simple Storage Service (S3);
  • NoSQL databases; and
  • relational databases.

For organizations that want to deploy on-premises big data systems, commonly used Apache open source technologies in addition to Hadoop and Spark include:

  • Yet Another Resource Negotiator (YARN), Hadoop's built-in resource manager and job scheduler;
  • the MapReduce programming framework;
  • Kafka, an application-to-application messaging and data streaming platform;
  • the HBase database; and
  • SQL-on-Hadoop query engines like Drill, Hive, Impala and Presto.

Users can install the open source versions of the technologies themselves or turn to commercial big data platforms offered by Cloudera-Hortonworks or MapR Technologies -- both of which are also supported in the cloud.

Big data collection practices, praise and criticism

Companies use the big data accumulated in their systems to improve operations, provide better customer service, create personalized marketing campaigns based on specific customer preferences and, ultimately, increase profitability. Big data is also used by medical researchers to identify disease risk factors. Data derived from electronic health records, social media, the web and other sources provides up-to-the-minute information on infectious disease threats or outbreaks.

For many years, companies have had few restrictions on the type of data they collect from their customers. However, as data collection and use has increased, so has data misuse. Concerned citizens who have experienced the mishandling of their data or have been victims of a data breach are calling for laws around data collection transparency and consumer data privacy.

The outcry about personal privacy violations led the European Union to pass the General Data Protection Regulation (GDPR), which took effect in May 2018; it limits the types of data that organizations can collect and requires opt-in consent from individuals. While there aren't similar laws in the U.S., government officials are investigating data handling practices, specifically among companies that collect consumer data and sell it to other companies for unknown use.

The human side of big data analytics

Ultimately, the value and effectiveness of big data depends on the workers tasked with understanding the data and formulating the proper queries to direct big data analytics projects. Some big data tools meet specialized niches and allow less technical users to use everyday business data in predictive analytics applications. Other technologies -- such as Hadoop-based big data appliances -- help businesses implement a suitable compute infrastructure to tackle big data projects, while minimizing the need for hardware and distributed software know-how.

Big data can be contrasted with small data, another evolving term that's often used to describe data whose volume and format can be easily used for self-service analytics. A commonly quoted axiom is that "big data is for machines; small data is for people."

This was last updated in September 2019

Continue Reading About big data

Join the conversation


Send me notifications when other members comment.

Please create a username to comment.

How has your organization used big data to gain a competitive edge?
very nice article
good article....
Excellent article! Thanks for sharing the blog! We are a one of the best Big data companies in USA never read the such a wonderful Information.  It's really pressure to read the blog. Please keep sharing, I look forward to read more..
hi .... i...
how do a firm store its data

use of big data

In March 2012, the Obama Administration announced the Big Data Research and Development
Initiative.” By improving our ability to extract knowledge and insights from large and complex
collections of digital data, the initiative promises to help accelerate the pace of discovery in
science and engineering, strengthen our national security, and transform teaching and learning.

very nice information and thanks for sharing the unique knowledge 
The writer was amazing clear all my doubts and queries about Big data. I am a fresher and don't know much about Big data, this article gives the clear picture of Big data and its working. Big data is a buzz word of 21st century, many beginners wants to know about Big data and its Frameworks like Hadoop and Spark. 


File Extensions and File Formats

Powered by: