photobank.kiev.ua - Fotolia

Manage Learn to apply best practices and optimize your operations.

Digital disruption shapes big data infrastructure, data engineering

In the face of burgeoning digital disruption, startups and established companies alike are responding with changes to their big data architectures and data engineering processes.

A good amount of flexibility has always been required for data professionals. They need even more flexibility today in industries where big data infrastructure is causing equally big changes in business practices.

This is sometimes called digital disruption, and it has an effect on how data engineering is evolving. That is the case whether the data pro is working for a disruptor, or for a company that could be disrupted.

To get the view of the disruptor, just ask Tarush Aggarwal, director of data engineering at WeWork Companies Inc. This startup builds out and rents interim or temporary workspaces to other startups. This business model could threaten conventional commercial real estate practices. Think of it as a kind of Uber -- rather than sharing a ride in someone's car, you share office space co-working with others as needed, and on a somewhat open-ended basis.

Nimble big data infrastructure

If much of WeWork's efforts are about nimbly building out infrastructure, so are Aggarwal's. But his efforts center on data infrastructure and what is needed today to inform those working to grow the company.

"Our focus is on what the business is doing. A data science team can live six months in the future, but a data engineering team has to live right now," he said. In the age of web-borne big data, living in the now means handling a lot of quickly arriving data.

In terms of data ingestion, emphasis is placed more on extract, load and transform (ELT) than on extract, transform and load processes, according to Aggarwal.

"The advantage that ELT gives you is it allows you to separate your ingestion from your transformation. That allows you to automate it completely," he said.

Also, Aggarwal added, separation of ingestion from transformation means WeWork can apply different data transformations later on, should someone get a better idea of what to do with the data.

Aggarwal shares a disruptor's view. He advises that data engineers spend time looking at how data in the organization is being used, working toward optimizing access to that data, and then add features on an ongoing basis.

Data reliability is important, he emphasized, "but not at the cost of flexibility."

Cord cutters call the tune

To see today's data engineering from another point of view, you could turn to Jeffrey Pinard. As vice president for data technology and engineering for advanced advertising initiatives at NBC, he is at the center of the 91-year-old peacock network's efforts to respond to disruption in the television advertising business. Like Aggarwal, he spoke as part of this month's Big Data Innovation Summit in Boston.

NBC is acutely aware that today's audience is moving, in some part, from traditional television viewing to internet cord cutting. Useful data is available on that internet audience, and it is changing the way advertising decisions are made. Things are different than they were in the days when Nielsen broadcast ratings were king.

"We need to change the way NBC approaches advertising," said Pinard.

In pursuing that objective, NBC set out to build a portfolio of audience analytics products called Audience Studio. There is plenty of data engineering involved.

"To support this, we needed to build a foundation from scratch -- an infrastructure that was going to support our needs for the future," he said.

That meant changes, as NBC was traditionally, in Pinard's words, "an on-premises organization." The infrastructure build-out needed to be cost-effective and to support the technology changes over time, he said, and cloud came under consideration.

Pinard and his colleagues came up with a fairly unique approach -- a cloud data lake. While it is somewhat in the spirit of Hadoop distributed processing, it actually forgoes Hadoop. Pinard described the use of Amazon Web Services Simple Storage Service, Apache Spark, Apache Parquet, Mesos and containers in building an on-cloud data lake that takes ingested data, allows for elastic processing and supports data access according to end users' permissions and job needs.

Moreover, the ability to store vast amounts of data enables end users to trace data's lineage, which is a useful trait in meetings that too often revolve around finding out how somebody arrived at a certain data point.

Data is central to transformation

There are threads connecting the disruptors' schemes with those that would potentially be disrupted. With any effective big data infrastructure, the ultimate point is to understand how people use it.

For Aggarwal at WeWork, each business unit must support a data model that makes sense to its specific goals. He is not seeking a single, golden data model.

For Pinard, new big data infrastructure enables his data engineering team to provide availability to a spectrum of users. He calls it "stored layers of knowledge that become a reusable data asset."

Whether WeWork rearranges the office as we know it, or NBC weathers the present storm of viewer cord cutting, remains to be seen. But it is no coincidence that data strategies are central to the way businesses are evolving. Evolution goes along with flexibility, which data engineering will continue to require going forward. 

Next Steps

Find out how data engineers work with data scientists

Learn about eBay's approach to data engineering

Discover a means of preparing big data for processing

This was last published in September 2017

Dig Deeper on Big data management

PRO+

Content

Find more PRO+ content and other member only offers, here.

Join the conversation

1 comment

Send me notifications when other members comment.

By submitting you agree to receive email from TechTarget and its partners. If you reside outside of the United States, you consent to having your personal data transferred to and processed in the United States. Privacy

Please create a username to comment.

How is your organization's approach to data engineering changing in the face of disruptive business forces?
Cancel

-ADS BY GOOGLE

SearchBusinessAnalytics

SearchAWS

SearchContentManagement

SearchOracle

SearchSAP

SearchSQLServer

Close